publications

publications by categories in reversed chronological order.

2025

  1. NeurIPS
    AutoDiscovery: Open-ended Scientific Discovery via Bayesian Surprise
    Dhruv Agarwal, Bodhisattwa Prasad Majumder, Reece Adamson, Megha Chakravorty, Satvika Reddy Gavireddy, Aditya Parashar, Harshit Surana, Bhavana Dalvi Mishra, Andrew McCallum, Ashish Sabharwal, and Peter Clark
    In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025
  2. ICLR
    DiscoveryBench: Towards Data-Driven Discovery with Large Language Models
    Bodhisattwa Prasad Majumder, Harshit Surana, Dhruv Agarwal, Bhavana Dalvi Mishra, Abhijeetsingh Meena, Aryan Prakhar, Tirth Vora, Tushar Khot, Ashish Sabharwal, and Peter Clark
    In The Thirteenth International Conference on Learning Representations, 2025
  3. ICLR
    Searching for Optimal Solutions with LLMs via Bayesian Optimization
    Dhruv Agarwal, Manoj Ghuhan Arivazhagan, Rajarshi Das, Sandesh Swamy, Sopan Khosla, and Rashmi Gangadharaiah
    In The Thirteenth International Conference on Learning Representations, 2025

2024

  1. ACL
    Multistage Collaborative Knowledge Distillation from a Large Language Model for Semi-Supervised Sequence Generation
    Jiachen Zhao, Wenlong Zhao, Andrew Drozdov, Benjamin Rozonoyer, Md Arafat Sultan, Jay-Yoon Lee, Mohit Iyyer, and Andrew McCallum
    In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Aug 2024
  2. ICML
    Fast, Scalable, Warm-Start Semidefinite Programming with Spectral Bundling and Sketching
    Rico Angell, and Andrew Mccallum
    In Proceedings of the 41st International Conference on Machine Learning, 21–27 jul 2024
  3. ICML
    Position: Data-driven Discovery with Large Generative Models
    Bodhisattwa Prasad Majumder*, Harshit Surana*, Dhruv Agarwal*, Sanchaita Hazra, Ashish Sabharwal, and Peter Clark
    In Forty-first International Conference on Machine Learning, 21–27 jul 2024
  4. NAACL (Findings)
    Bring Your Own KG: Self-Supervised Program Synthesis for Zero-Shot KGQA
    Dhruv Agarwal, Rajarshi Das, Sopan Khosla, and Rashmi Gangadharaiah
    In Findings of the Association for Computational Linguistics: NAACL 2024, Jun 2024

2023

  1. ACL
    Multi-CLS BERT: An Efficient Alternative to Traditional Ensembling
    Haw-Shiuan Chang, Ruei-Yao Sun, Kathryn Ricci, and Andrew McCallum
    In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Jul 2023
  2. ACL (Findings)
    Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond
    Haw-Shiuan Chang, Zonghai Yao, Alolika Gon, Hong Yu, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: ACL 2023, Jul 2023
  3. EMNLP (Findings)
    Efficient k-NN Search with Cross-Encoders using Adaptive Multi-Round CUR Decomposition
    Nishant Yadav, Nicholas Monath, Manzil Zaheer, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: EMNLP 2023, Dec 2023
  4. AISTATS
    Improving Dual-Encoder Training through Dynamic Indexes for Negative Mining
    Nicholas Monath, Manzil Zaheer, Kelsey Allen, and Andrew Mccallum
    In Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, 25–27 apr 2023
  5. EACL
    Low-Resource Compositional Semantic Parsing with Concept Pretraining
    Subendhu Rongali, Mukund Sridhar, Haidar Khan, Konstantine Arkoudas, Wael Hamza, and Andrew McCallum
    In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, May 2023
  6. EMNLP (Findings)
    Machine Reading Comprehension using Case-based Reasoning
    Dung Thai, Dhruv Agarwal, Mudit Chaudhary, Wenlong Zhao, Rajarshi Das, Jay-Yoon Lee, Hannaneh Hajishirzi, Manzil Zaheer, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: EMNLP 2023, Dec 2023
  7. ACL (Findings)
    Causal Matching with Text Embeddings: A Case Study in Estimating the Causal Effects of Peer Review Policies
    Raymond Zhang, Neha Nayak Kennard, Daniel Smith, Daniel McFarland, Andrew McCallum, and Katherine Keith
    In Findings of the Association for Computational Linguistics: ACL 2023, Jul 2023
  8. SIGIR
    Editable User Profiles for Controllable Text Recommendations
    Sheshera Mysore, Mahmood Jasim, Andrew Mccallum, and Hamed Zamani
    In Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 2023
  9. KDD
    Online Level-wise Hierarchical Clustering
    Nicholas Monath, Manzil Zaheer, and Andrew McCallum
    In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Jul 2023
  10. RecSys
    Large Language Model Augmented Narrative Driven Recommendations
    Sheshera Mysore, Andrew Mccallum, and Hamed Zamani
    In Proceedings of the 17th ACM Conference on Recommender Systems, Jul 2023
  11. EMNLP (Findings)
    PaRaDe: Passage Ranking using Demonstrations with LLMs
    Andrew Drozdov, Honglei Zhuang, Zhuyun Dai, Zhen Qin, Razieh Rahimi, Xuanhui Wang, Dana Alon, Mohit Iyyer, Andrew McCallum, Donald Metzler, and Kai Hui
    In Findings of the Association for Computational Linguistics: EMNLP 2023, Dec 2023

2022

  1. NAACL
    Inducing and Using Alignments for Transition-based AMR Parsing
    Andrew Drozdov, Jiawei Zhou, Radu Florian, Andrew McCallum, Tahira Naseem, Yoon Kim, and Ramon Fernandez Astudillo
    In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Dec 2022
  2. EMNLP (Findings)
    You can’t pick your neighbors, or can you? When and how to rely on retrieval in the kNN-LM
    Andrew Drozdov, Shufan Wang, Razieh Rahimi, Andrew McCallum, Hamed Zamani, and Mohit Iyyer
    In Findings of the Association for Computational Linguistics: EMNLP 2022, Dec 2022
  3. NAACL
    DISAPERE: A Dataset for Discourse Structure in Peer Review Discussions
    Neha Kennard, Tim O’Gorman, Rajarshi Das, Akshay Sharma, Chhandak Bagchi, Matthew Clinton, Pranay Kumar Yelugam, Hamed Zamani, and Andrew McCallum
    In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Dec 2022
  4. ICML
    Knowledge base question answering by case-based reasoning over subgraphs
    Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin Jia, and Andrew McCallum
    In International Conference on Machine Learning (ICML), Dec 2022
  5. NAACL
    Entity Linking via Explicit Mention-Mention Coreference Modeling
    Dhruv Agarwal, Rico Angell, Nicholas Monath, and Andrew McCallum
    In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jul 2022
  6. ICML
    Interactive Correlation Clustering with Existential Cluster Constraints
    Rico Angell, Nicholas Monath, Nishant Yadav, and Andrew McCallum
    In International Conference on Machine Learning (ICML), Jul 2022
  7. AAAI
    An Evaluative Measure of Clustering Methods Incorporating Hyperparameter Sensitivity
    Siddhartha Mishra, Nicholas Monath, Michael Boratko, Ariel Kobren, and Andrew McCallum
    In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Jul 2022
  8. AAAI
    Sublinear Time Approximation of Text Similarity Matrices
    Archan Ray, Nicholas Monath, Andrew McCallum, and Cameron Musco
    In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Jul 2022
  9. ACL
    Softmax Bottleneck Makes Language Models Unable to Represent Multi-mode Word Distributions
    Haw-Shiuan Chang, and Andrew McCallum
    In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL), Jul 2022
  10. ACL
    Word2Box: Capturing Set-Theoretic Semantics of Words using Box Embeddings
    Shib Dasgupta, Michael Boratko, Siddhartha Mishra, Shriya Atmakuri, Dhruvesh Patel, Xiang Li, and Andrew McCallum
    In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (ACL), Jul 2022
  11. ICLR
    Modeling label space interactions in multi-label classification using box embeddings
    Dhruvesh Patel, Pavitra Dangati, Jay-Yoon Lee, Michael Boratko, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Jul 2022
  12. EMNLP
    Efficient Nearest Neighbor Search for Cross-Encoder Models using Matrix Factorization
    Nishant Yadav, Nicholas Monath, Rico Angell, Manzil Zaheer, and Andrew McCallum
    In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP), Jul 2022
  13. NeurIPS
    Structured energy network as a loss
    Jay Yoon Lee, Dhruvesh Patel, Purujit Goyal, Wenlong Zhao, Zhiyang Xu, and Andrew McCallum
    Advances in Neural Information Processing Systems, Jul 2022

2021

  1. Improved Latent Tree Induction with Distant Supervision via Span Constraints
    Zhiyang Xu, Andrew Drozdov, Jay Yoon Lee, Tim O’Gorman, Subendhu Rongali, Dylan Finkbeiner, Shilpa Suresh, Mohit Iyyer, and Andrew McCallum
    In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), Jul 2021
  2. Extending Multi-Sense Word Embedding to Phrases and Sentences for Unsupervised Semantic Applications
    Haw-Shiuan Chang, Amol Agrawal, and Andrew McCallum
    In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Jul 2021
  3. Changing the Mind of Transformers for Topically-Controllable Language Generation
    Haw-Shiuan Chang, Jiaming Yuan, Mohit Iyyer, and Andrew McCallum
    In Conference of the European Chapter of the Association for Computational Linguistics (EACL), Jul 2021
  4. Multi-facet Universal Schema
    Rohan Paul*, Haw-Shiuan Chang*, and Andrew McCallum
    In Conference of the European Chapter of the Association for Computational Linguistics (EACL), Jul 2021
  5. MS-Mentions: Consistently Annotating Entity Mentions in Materials Science Procedural Text
    Tim O’Gorman, Zach Jensen, Sheshera Mysore, Kevin Huang, Rubayyat Mahbub, Elsa Olivetti, and Andrew McCallum
    In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Nov 2021
  6. CSFCube - A Test Collection of Computer Science Research Articles for Faceted Query by Example
    Sheshera Mysore, Tim O’Gorman, Andrew McCallum, and Hamed Zamani
    In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), Nov 2021
  7. Multi-Vector Models with Textual Guidance for Fine-Grained Scientific Document Similarity
    Sheshera Mysore, Arman Cohan, and Tom Hope
    CoRR, Nov 2021
  8. Clustering-based Inference for Biomedical Entity Linking
    Rico Angell, Nicholas Monath, Sunil Mohan, Nishant Yadav, and Andrew McCallum
    In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Nov 2021
  9. Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions
    Nishant Yadav, Nicholas Monath, Rico Angell, and Andrew McCallum
    In Proceedings of the Fourth Workshop on Computational Models of Reference, Anaphora and Coreference at EMNLP, Nov 2021
  10. SUBSUME: A Dataset for Subjective Summary Extraction from Wikipedia Documents
    Nishant Yadav*, Matteo Brucato*, Anna Fariha*, Oscar Youngquist, Julian Killingback, Alexandra Meliou, and Peter Haas
    In Proceedings of the Third Workshop on New Frontiers in Summarization at EMNLP, Nov 2021
  11. EMNLP
    Case-based Reasoning for Natural Language Queries over Knowledge Bases
    Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya Godbole, Ethan Perez, Jay Yoon Lee, Lizhen Tan, Lazaros Polymenakos, and Andrew McCallum
    In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov 2021
  12. Simultaneously self-attending to text and entities for knowledge-informed text representations
    Dung Thai, Raghuveer Thirukovalluru, Trapit Bansal, and Andrew McCallum
    In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), Nov 2021
  13. EMNLP
    Diverse Distributions of Self-Supervised Tasks for Meta-Learning in NLP
    Trapit Bansal, Karthick Prasad Gunasekaran, Tong Wang, Tsendsuren Munkhdalai, and Andrew McCallum
    In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov 2021
  14. NeurIPS
    Capacity and Bias of Learned Geometric Embeddings for Directed Graphs
    Michael Boratko, Dongxu Zhang, Nicholas Monath, Luke Vilnis, Kenneth L Clarkson, and Andrew McCallum
    Advances in Neural Information Processing Systems (NeurIPS), Nov 2021
  15. UAI
    Exact and approximate hierarchical clustering using A*
    Craig S Greenberg, Sebastian Macaluso, Nicholas Monath, Avinava Dubey, Patrick Flaherty, Manzil Zaheer, Amr Ahmed, Kyle Cranmer, and Andrew McCallum
    In Uncertainty in Artificial Intelligence (UAI), Nov 2021
  16. KDD
    Scalable Hierarchical Agglomerative Clustering
    Nicholas Monath, Kumar Avinava Dubey, Guru Guruganesh, Manzil Zaheer, Amr Ahmed, Andrew McCallum, Gokhan Mergen, Marc Najork, Mert Terzihan, Bryon Tjanaka, and  others
    In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining (KDD), Nov 2021
  17. ACL
    Scaling within document coreference to long texts
    Raghuveer Thirukovalluru, Nicholas Monath, Kumar Shridhar, Manzil Zaheer, Mrinmaya Sachan, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (ACL), Nov 2021
  18. AISTATS
    Dag-structured clustering by nearest neighbors
    Nicholas Monath, Manzil Zaheer, Kumar Avinava Dubey, Amr Ahmed, and Andrew McCallum
    In International Conference on Artificial Intelligence and Statistics (AISTATS), Nov 2021
  19. AISTATS
    Cluster trellis: Data structures & algorithms for exact inference in hierarchical clustering
    Sebastian Macaluso, Craig Greenberg, Nicholas Monath, Ji Ah Lee, Patrick Flaherty, Kyle Cranmer, Andrew McGregor, and Andrew McCallum
    In International Conference on Artificial Intelligence and Statistics (AISTATS), Nov 2021
  20. Box-to-box transformations for modeling joint hierarchies
    Shib Sankar Dasgupta, Xiang Lorraine Li, Michael Boratko, Dongxu Zhang, and Andrew McCallum
    In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), Nov 2021
  21. NAACL
    Probabilistic Box Embeddings for Uncertain Knowledge Graph Reasoning
    Xuelu Chen, Michael Boratko, Muhao Chen, Shib Sankar Dasgupta, Xiang Lorraine Li, and Andrew McCallum
    In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Nov 2021
  22. UAI
    Min/max stability and box distributions
    Michael Boratko, Javier Burroni, Shib Sankar Dasgupta, and Andrew McCallum
    In Uncertainty in Artificial Intelligence (UAI), Nov 2021

2020

  1. Using Error Decay Prediction to Overcome Practical Issues of Deep Active Learning for Named Entity Recognition
    Haw-Shiuan Chang, Shankar Vembu, Sunil Mohan, Rheeya Uppaal, and Andrew McCallum
    Machine Learning, Nov 2020
  2. Unsupervised Parsing with S-DIORA: Single Tree Encoding for Deep Inside-Outside Recursive Autoencoders
    Andrew Drozdov, Subendhu Rongali, Yi-Pei Chen, Tim O’Gorman, Mohit Iyyer, and Andrew McCallum
    In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov 2020
  3. Unsupervised Pre-training for Biomedical Question Answering
    Vaishnavi Kommaraju, Karthick Gunasekaran, Kun Li, Trapit Bansal, Andrew McCallum, Ivana Williams, and Ana-Maria Istrate
    In CLEF (Working Notes), Nov 2020
  4. Simultaneously linking entities and extracting relations from biomedical text without mention-level supervision
    Trapit Bansal, Pat Verga, Neha Choudhary, and Andrew McCallum
    In Proceedings of the AAAI Conference on Artificial Intelligence, Nov 2020
  5. Learning to Few-Shot Learn Across Diverse Natural Language Classification Tasks
    Trapit Bansal, Rishikesh Jha, and Andrew McCallum
    In Proceedings of the 28th International Conference on Computational Linguistics, Nov 2020
  6. Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks
    Trapit Bansal, Rishikesh Jha, Tsendsuren Munkhdalai, and Andrew McCallum
    In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov 2020
  7. An Instance Level Approach for Shallow Semantic Parsing in Scientific Procedural Text
    Daivik Swarup, Ahsaas Bajaj, Sheshera Mysore, Tim O’Gorman, Rajarshi Das, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: EMNLP 2020, Nov 2020
  8. EMNLP
    Probabilistic Case-based Reasoning for Open-World Knowledge Graph Completion
    Rajarshi Das, Ameya Godbole, Nicholas Monath, Manzil Zaheer, and Andrew McCallum
    In Findings of the Association for Computational Linguistics: EMNLP 2020 (EMNLP), Nov 2020
  9. AKBC
    A Simple Approach to Case-Based Reasoning in Knowledge Bases
    Rajarshi Das, Ameya Godbole, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum
    In Automated Knowledge Base Construction (AKBC), Nov 2020
  10. EMNLP
    ProtoQA: A Question Answering Dataset for Prototypical Common-Sense Reasoning
    Michael Boratko, Xiang Li, Tim O’Gorman, Rajarshi Das, Dan Le, and Andrew McCallum
    In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Nov 2020
  11. AKBC
    Using BibTeX to Automatically Generate Labeled Data for Citation Field Extraction
    Dung Thai, Zhiyang Xu, Nicholas Monath, Boris Veytsman, and Andrew McCallum
    In Automated Knowledge Base Construction (AKBC), Nov 2020
  12. AKBC
    Predicting Institution Hierarchies with Set-based Models
    Derek Tam, Nicholas Monath, Ari Kobren, and Andrew McCallum
    In Automated Knowledge Base Construction (AKBC), Nov 2020
  13. NeurIPS
    Improving local identifiability in probabilistic box embeddings
    Shib Dasgupta, Michael Boratko, Dongxu Zhang, Luke Vilnis, Xiang Li, and Andrew McCallum
    Advances in Neural Information Processing Systems (NeurIPS), Nov 2020
  14. AKBC
    Representing Joint Hierarchies with Box Embeddings
    Dhruvesh Patel, Shib Sankar Dasgupta, Michael Boratko, Xiang Li, Luke Vilnis, and Andrew McCallum
    In Conference on Automated Knowledge Base Construction, AKBC 2020, Virtual, June 22-24, 2020 (AKBC), Nov 2020

2019

  1. Multi-step Retriever-Reader Interaction for Scalable Open-domain Question Answering
    Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Nov 2019
  2. Building Dynamic Knowledge Graphs from Text using Machine Reading Comprehension
    Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Nov 2019
  3. Smoothing the Geometry of Box Embeddings
    Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Nov 2019
  4. OpenKI: Integrating Open Information Extraction and Knowledge Bases with Relation Inference
    Dongxu Zhang, Subhabrata Mukherjee, Colin Lockard, Luna Dong, and Andrew McCallum
    In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Nov 2019
  5. Supervised Hierarchical Clustering with Exponential Linkage
    Nishant Yadav, Ari Kobren, Nicholas Monath, and Andrew McCallum
    In International Conference on Machine Learning (ICML), Nov 2019
  6. Integrating User Feedback under Identity Uncertainty in Knowledge Base Construction
    Ari Kobren, Nicholas Monath, and Andrew McCallum
    In Automated Knowledge Base Construction (AKBC), Nov 2019
  7. Optimal Transport-based Alignment of Learned Character Representations for String Similarity
    Derek Tam, Nicholas Monath, Ari Kobren, Aaron Traylor, Rajarshi Das, and Andrew McCallum
    In Association of Computational Linguistics (ACL), Nov 2019
  8. Scalable Hierarchical Clustering with Tree Grafting
    Nicholas Monath*, Ari Kobren*, Akshay Krishnamurthy, Michael Glass, and Andrew McCallum
    In International Conference on Knowledge Discovery and Data Mining (KDD), Nov 2019
  9. Paper Matching with Local Fairness Constraints
    Ari Kobren, Barna Saha, and Andrew McCallum
    In International Conference on Knowledge Discovery and Data Mining (KDD), Nov 2019
  10. Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space
    Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, and Amr Ahmed
    In International Conference on Knowledge Discovery and Data Mining (KDD), Nov 2019
  11. The Materials Science Procedural Text Corpus: Annotating Materials Synthesis Procedures with Shallow Semantic Structures
    Sheshera Mysore, Zach Jensen, Edward Kim, Kevin Huang, Haw-Shiuan Chang, Emma Strubell, Jeffrey Flanigan, Andrew McCallum, and Elsa Olivetti
    In Proceedings of the 13th Linguistic Annotation Workshop at ACL, Nov 2019
  12. A2N: Attending to Neighbors for Knowledge Graph Inference
    Trapit Bansal, Da-Cheng Juan, Sujith Ravi, and Andrew McCallum
    In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Jul 2019
  13. Unsupervised Latent Tree Induction with Deep Inside-Outside Recursive Autoencoders
    Andrew Drozdov, Patrick Verga, Mohit Yadav, Mohit Iyyer, and Andrew McCallum
    In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL), Jul 2019
  14. Unsupervised Labeled Parsing with Deep Inside-Outside Recursive Autoencoders
    Andrew Drozdov, Patrick Verga, Yi-Pei Chen, Mohit Iyyer, and Andrew McCallum
    In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP), Jul 2019
  15. Chains-of-reasoning at textgraphs 2019 shared task: Reasoning over chains of facts for explainable multi-hop inference
    Rajarshi Das, Ameya Godbole, Manzil Zaheer, Shehzaad Dhuliawala, and Andrew McCallum
    In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), Jul 2019
  16. Multi-step entity-centric information retrieval for multi-hop question answering
    Rajarshi Das, Ameya Godbole, Dilip Kavarthapu, Zhiyu Gong, Abhishek Singhal, Mo Yu, Xiaoxiao Guo, Tian Gao, Hamed Zamani, Manzil Zaheer, and  others
    In Proceedings of the 2nd Workshop on Machine Reading for Question Answering, Jul 2019

2018

  1. Distributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection
    Haw-Shiuan Chang, ZiYun Wang, Luke Vilnis, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Jul 2018
  2. Simultaneously Self-attending to All Mentions for Full-Abstract Biological Relation Extraction
    Patrick Verga, Emma Strubell, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Jul 2018
  3. Training Structured Prediction Energy Networks with Indirect Supervision
    Amirmohammad Rooshenas, Aishwarya Kamath, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Jul 2018
  4. Efficient Graph-based Word Sense Induction by Distributional Inclusion Vector Embeddings
    Haw-Shiuan Chang, Amol Agrawal, Ananya Ganesh, Anirudha Desai, Vinayak Mathur, Alfred Hough, and Andrew McCallum
    In TextGraphs-12: the Workshop on Graph-based Methods for Natural Language Processing (NAACL WS), Jul 2018
  5. Hierarchical Losses and New Resources for Fine-grained Entity Typing and Linking
    Shikhar Murty*, Patrick Verga*, Luke Vilnis, Irena Radovanovic, and Andrew McCallum (* Equal Contribution)
    In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), Jul 2018
  6. Probabilistic Embedding of Knowledge Graphs with Box Lattice Measures
    Luke Vilnis*, Xiang Li*, Shikhar Murty, and Andrew McCallum (* Equal Contribution)
    In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL), Jul 2018
  7. Compact Representation of Uncertainty in Clustering
    Craig Greenberg, Nicholas Monath, Ari Kobren, Patrick Flaherty, Andrew McGregor, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS), Jul 2018
  8. Embedded-State Latent Conditional Random Fields for Sequence Labeling
    Dung Thai, Sree Harsha Ramesh, Shikhar Murty, Luke Vilnis, and Andrew McCallum
    In Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL), Jul 2018
  9. Linguistically-Informed Self-Attention for Semantic Role Labeling
    Emma Strubell, Patrick Verga, Daniel Andor, David Weiss, and Andrew McCallum
    In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), Jul 2018
  10. Marginal Likelihood Training of BiLSTM-CRF for Biomedical Named Entity Recognition from Disjoint Label Sets
    Nathan Greenberg, Trapit Bansal, Patrick Verga, and Andrew McCallum
    In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP), Jul 2018
  11. Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning
    Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy, Alex Smola, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Jul 2018
  12. A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset
    Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, and  others
    In Proceedings of the Workshop on Machine Reading for Question Answering, Jul 2018

2017

  1. Learning a Natural Language Interface with Neural Programmer
    Arvind Neelakantan, Quoc V. Le, Martin Abadi, Andrew McCallum, and Dario Amodei
    In International Conference on Learning Representations (ICLR), Jul 2017
  2. Generalizing to Unseen Entities and Entity Pairs with Row-less Universal Schema
    Patrick Verga, Arvind Neelakantan, and Andrew McCallum
    In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, Jul 2017
  3. Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
    Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum
    In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, Jul 2017
  4. A Hierarchical Algorithm for Extreme Clustering
    Ari Kobren, Nicholas Monath, Akshay Krishnamurthy, and Andrew McCallum
    In Proceedings of the 23rd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Halifax, NS, Canada, August 13 - 17, 2017, Jul 2017
  5. End-to-End Learning for Structured Prediction Energy Networks
    David Belanger, Bishan Yang, and Andrew McCallum
    In Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, NSW, Australia, 6-11 August 2017, Jul 2017
  6. Dependency Parsing with Dilated Iterated Graph CNNs
    Emma Strubell, and Andrew McCallum
    In Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing (SPNLP at EMNLP), Copenhagen, Denmark, September 2017, Jul 2017
  7. Fast and Accurate Entity Recognition with Iterated Dilated Convolutions
    Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum
    In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark, September 9-11, 2017, Jul 2017
  8. Active Bias: Training a More Accurate Neural Network by Emphasizing High Variance Samples
    Haw-Shiuan Chang, Erik G. Learned-Miller, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS), Jul 2017
  9. SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications
    Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and Andrew McCallum
    In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval at ACL), Vancouver, Canada, August 3-4, 2017, Jul 2017
  10. Question Answering on Knowledge Bases and Text using Universal Schema and Memory Networks
    Rajarshi Das, Manzil Zaheer, Siva Reddy, and Andrew McCallum
    In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, Canada, July 30 - August 4, Volume 2: Short Papers, Jul 2017
  11. RelNet: End-to-end Modeling of Entities & Relations
    Trapit Bansal, Arvind Neelakantan, and Andrew McCallum
    arXiv preprint, Jul 2017
  12. Low-Rank Hidden State Embeddings for Viterbi Sequence Labeling
    Dung Thai, Shikhar Murty, Trapit Bansal, Luke Vilnis, David Belanger, and Andrew McCallum
    In International Conference on Machine Learning Workshop on Deep Structured Prediction (ICML WS), Jul 2017
  13. Improved Representation Learning for Predicting Commonsense Ontologies
    Xiang Li, Luke Vilnis, and Andrew McCallum
    In International Conference on Machine Learning Workshop on Deep Structured Prediction (ICML WS), Jul 2017
  14. Learning String Alignments for Entity Aliases
    Aaron Traylor, Nicholas Monath, Rajarshi Das, and Andrew McCallum
    In 6th Workshop on Automated Knowledge Base Construction (AKBC) 2017 at NIPS, Jul 2017
  15. Entity-centric Attribute Feedback for Interactive Knowledge Bases
    Ari Kobren, Nicholas Monath, and Andrew McCallum
    In 6th Workshop on Automated Knowledge Base Construction (AKBC) 2017 at NIPS, Jul 2017
  16. Gradient-based Hierarchical Clustering
    Nicholas Monath, Ari Kobren, Akshay Krishnamurthy, and Andrew McCallum
    In NIPS Workshop on Discrete Structures in Machine Learning (DISCML), Jul 2017
  17. Automatically Extracting Action Graphs from Materials Science Synthesis Procedures
    Sheshera Mysore, Edward Kim, Emma Strubell, Ao Liu, Haw-Shiuan Chang, Srikrishna Kompella, Kevin Huang, Andrew McCallum, and Elsa Olivetti
    In Workshop on Machine Learning for Molecules and Materials at NIPS, Jul 2017

2016

  1. Structured Prediction Energy Networks
    David Belanger, and Andrew McCallum
    In Proceedings of the 33rd International Conference on Machine Learning (ICML), New York City, NY, USA, June 19-24, 2016, Jul 2016
  2. Row-less Universal Schema
    Patrick Verga, and Andrew McCallum
    In Proceedings of the 5th Workshop on Automated Knowledge Base Construction (AKBC at NAACL-HLT), San Diego, CA, USA, June 17, 2016, Jul 2016
  3. Multilingual Relation Extraction using Compositional Universal Schema
    Patrick Verga, David Belanger, Emma Strubell, Benjamin Roth, and Andrew McCallum
    In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (HLT/NAACL), San Diego California, USA, June 12-17, 2016, Jul 2016
  4. Incorporating Selectional Preferences in Multi-hop Relation Extraction
    Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum
    In Proceedings of the 5th Workshop on Automated Knowledge Base Construction (AKBC at NAACL-HLT), San Diego, CA, USA, June 17, 2016, Jul 2016
  5. Call for Discussion: Building a New Standard Dataset for Relation Extraction Tasks
    Teresa Martin, Fiete Botschen, Ajay Nagesh, and Andrew McCallum
    In Proceedings of the 5th Workshop on Automated Knowledge Base Construction (AKBC at NAACL-HLT), San Diego, CA, USA, June 17, 2016, Jul 2016
  6. Ask the GRU: Multi-task Learning for Deep Text Recommendations
    Trapit Bansal, David Belanger, and Andrew McCallum
    In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys), Boston, MA, USA, September 15-19, 2016, Jul 2016
  7. Extracting Multilingual Relations under Limited Resources: TAC 2016 Cold-Start KB construction and Slot-Filling using Compositional Universal Schema
    Haw-Shiuan Chang, Abdurrahman Munir, Ao Liu, Johnny Tian-Zheng Wei, Aaron Traylor, Ajay Nagesh, Nicholas Monath, Patrick Verga, Emma Strubell, and Andrew McCallum
    In Text Analysis Conference, Knowledge Base Population (TAC/KBP), Jul 2016

2015

  1. Word Representations via Gaussian Embedding
    Luke Vilnis, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Jul 2015
  2. Embedded Representations of Lexical and Knowledge-Base Semantics
    Andrew McCallum
    In Proceedings of the 2015 International Conference on The Theory of Information Retrieval (ICTIR), Northampton, Massachusetts, USA, September 27-30, 2015, Jul 2015
  3. Compositional Vector Space Models for Knowledge Base Completion
    Arvind Neelakantan, Benjamin Roth, and Andrew McCallum
    In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL), July 26-31, 2015, Beijing, China, Volume 1: Long Papers, Jul 2015
  4. Learning Dynamic Feature Selection for Fast Sequential Prediction
    Emma Strubell, Luke Vilnis, Kate Silverstein, and Andrew McCallum
    In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing (ACL), July 26-31, 2015, Beijing, China, Volume 1: Long Papers, Jul 2015
  5. Bethe Projections for Non-Local Inference
    Luke Vilnis, David Belanger, Daniel Sheldon, and Andrew McCallum
    In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence (UAI), July 12-16, 2015, Amsterdam, The Netherlands, Jul 2015
  6. Reports on the 2015 AAAI Spring Symposium Series
    Nitin Agarwal, Sean Andrist, Dan Bohus, Fei Fang, Laurie Fenstermacher, Lalana Kagal, Takashi Kido, Christopher Kiekintveld, William F. Lawless, Huan Liu, Andrew McCallum, Hemant Purohit, Oshani Seneviratne, Keiki Takadama, and Gavin Taylor
    AI Magazine, Jul 2015
  7. Building Knowledge Bases with Universal Schema: Cold Start and Slot-Filling Approaches
    Benjamin Roth, Nicholas Monath, David Belanger, Emma Strubell, Patrick Verga, and Andrew McCallum
    In Text Analysis Conference, Knowledge Base Population (TAC/KBP), Jul 2015
  8. Compositional Vector Space Models for Knowledge Base Inference
    Arvind Neelakantan, Benjamin Roth, and Andrew McCallum
    In AAAI Spring Symposium Series (AAAI-SS), Jul 2015
  9. Knowledge Representation and Reasoning: Integrating Symbolic and Neural Approaches
    Evgeniy Gabrilovich, Ramanathan Guha, Andrew McCallum, and Kevin Murphy
    In AAAI Spring Symposium Series (AAAI-SS), Jul 2015

2014

  1. Lexicon Infused Phrase Embeddings for Named Entity Resolution
    Alexandre Passos, Vineet Kumar, and Andrew McCallum
    In Proceedings of the Eighteenth Conference on Computational Natural Language Learning (CoNLL), Baltimore, Maryland, USA, June 26-27, 2014, Jul 2014
  2. Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space
    Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum
    In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2014
  3. Message Passing for Soft Constraint Dual Decomposition
    David Belanger, Alexandre Passos, Sebastian Riedel, and Andrew McCallum
    In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence (UAI), Quebec City, Quebec, Canada, July 23-27, 2014, Jul 2014
  4. Learning Soft Linear Constraints with Application to Citation Field Extraction
    Sam Anzaroot, Alexandre Passos, David Belanger, and Andrew McCallum
    In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL), June 22-27, 2014, Baltimore, MD, USA, Volume 1: Long Papers, Jul 2014
  5. Universal Schema for Slot-Filling, Cold-Start KBP and Event Argument Extraction: UMass IESL at TAC KBP 2014
    Benjamin Roth, Emma Strubell, John Sullivan, Lakshmi Vikraman, Katherine Silverstein, and  Andrew McCallum
    In Text Analysis Conference, Knowledge Base Population (TAC/KBP), Jul 2014
  6. Training for Fast Sequential Prediction Using Dynamic Feature Selection
    Emma Strubell, Luke Vilnis, and  Andrew McCallum
    In NIPS Workshop on Modern Machine Learning and NLP (NIPS WS), Jul 2014
  7. Knowledge Base Completion using Compositional Vector Space Models
    Arvind Neelakantan, Benjamin Roth, and Andrew McCallum
    In 4th Workshop on Automated Knowledge Base Construction (AKBC) 2014 at NIPS, Jul 2014
  8. Minimally Supervised Event Argument Extraction using Universal Schema
    Benjamin Roth, Emma Strubell, Katherine Silverstein, and Andrew McCallum
    In 4th Workshop on Automated Knowledge Base Construction (AKBC) 2014 at NIPS, Jul 2014
  9. A Hierarchical Model for Universal Schema Relation Extraction
    Arvind Neelakantan, Alexandre Passos, and Andrew McCallum
    In 4th Workshop on Automated Knowledge Base Construction (AKBC) 2014 at NIPS, Jul 2014

2013

  1. Dynamic Knowledge-Base Alignment for Coreference Resolution
    Jiaping Zheng, Luke Vilnis, Sameer Singh, Jinho D. Choi, and Andrew McCallum
    In Proceedings of the Seventeenth Conference on Computational Natural Language Learning (CoNLL), Sofia, Bulgaria, August 8-9, 2013, Jul 2013
  2. Transition-based Dependency Parsing with Selectional Branching
    Jinho D. Choi, and Andrew McCallum
    In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL), 4-9 August 2013, Sofia, Bulgaria, Volume 1: Long Papers, Jul 2013
  3. Universal schema for entity type prediction
    Limin Yao, Sebastian Riedel, and Andrew McCallum
    In Proceedings of the 2013 workshop on Automated knowledge base construction (AKBC at CIKM), San Francisco, California, USA, October 27-28, 2013, Jul 2013
  4. Assessing confidence of knowledge base content with an experimental study in entity resolution
    Michael L. Wick, Sameer Singh, Ari Kobren, and Andrew McCallum
    In Proceedings of the 2013 workshop on Automated knowledge base construction (AKBC at CIKM), San Francisco, California, USA, October 27-28, 2013, Jul 2013
  5. A joint model for discovering and linking entities
    Michael L. Wick, Sameer Singh, Harshal Pandya, and Andrew McCallum
    In Proceedings of the 2013 workshop on Automated knowledge base construction (AKBC at CIKM), San Francisco, California, USA, October 27-28, 2013, Jul 2013
  6. Universal Schema for Slot Filling and Cold Start: UMass IESL at TACKBP 2013
    Sameer Singh, Limin Yao, David Belanger, Ari Kobren, Sam Anzaroot, Mike Wick, Alexandre Passos, Harshal Pandya, Jinho D. Choi, Brian Martin, and Andrew McCallum
    In Proceedings of the Sixth Text Analysis Conference, (TAC), Gaithersburg, Maryland, USA, November 18-19, 2013, Jul 2013
  7. Joint inference of entities, relations, and coreference
    Sameer Singh, Sebastian Riedel, Brian Martin, Jiaping Zheng, and Andrew McCallum
    In Proceedings of the 2013 workshop on Automated knowledge base construction (AKBC at CIKM), San Francisco, California, USA, October 27-28, 2013, Jul 2013
  8. Latent Relation Representations for Universal Schemas
    Sebastian Riedel, Limin Yao, and Andrew McCallum
    In International Conference on Learning Representations (ICLR), Jul 2013
  9. Relation Extraction with Matrix Factorization and Universal Schemas
    Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin
    In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Proceedings, June 9-14, 2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, Jul 2013
  10. Open Scholarship and Peer Review: a Time for Experimentation
    David Soergel, Adam Saunders, and Andrew McCallum
    In ICML Workshop on Peer Reviewing and Publishing Models (PEER), Jul 2013
  11. A New Dataset for Fine-Grained Citation Field Extraction
    Sam Anzaroot, and Andrew McCallum
    In ICML Workshop on Peer Reviewing and Publishing Models (PEER), Jul 2013
  12. Large-scale Author Coreference via Hierarchical Entity Representations
    Michael L Wick, Ari Kobren, and Andrew McCallum
    In ICML Workshop on Peer Reviewing and Publishing Models (PEER), Jul 2013
  13. Wikilinks: A Large-scale Cross-Document Coreference Corpus Labeled via Links to Wikipedia
    Sameer Singh, Amar Subramanya, Fernando Pereira, and Andrew McCallum
    Technical Report (TR) UMASS-CS-2012-015, October, 2012, Jul 2013
  14. Optimization and Learning in FACTORIE
    Alexandre Passos, Luke Vilnis, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Optimization for Machine Learning (NIPS WS), Jul 2013
  15. Marginal Inference in MRFs using Frank-Wolfe
    David Belanger, Dan Sheldon, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Greedy Optimization, Frank-Wolfe and Friends (NIPS WS), Jul 2013
  16. Anytime Belief Propagation Using Sparse Domains
    Sameer Singh, Sebastian Riedel, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Resource-Efficient Machine Learning (NIPS WS), Jul 2013

2012

  1. Topic models for taxonomies
    Anton Bakalov, Andrew McCallum, Hanna M. Wallach, and David M. Mimno
    In Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), Washington, DC, USA, June 10-14, 2012, Jul 2012
  2. An Integrated, Conditional Model of Information Extraction and Coreference with Applications to Citation Matching
    Ben Wellner, Andrew McCallum, Fuchun Peng, and Michael Hay
    arXiv preprint, Jul 2012
  3. An Introduction to Conditional Random Fields
    Charles A. Sutton, and Andrew McCallum
    Foundations and Trends in Machine Learning, Jul 2012
  4. MAP Inference in Chains using Column Generation
    David Belanger, Alexandre Passos, Sebastian Riedel, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS) 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., Jul 2012
  5. Combining joint models for biomedical event extraction
    David McClosky, Sebastian Riedel, Mihai Surdeanu, Andrew McCallum, and Christopher D. Manning
    BMC Bioinformatics, Jul 2012
  6. Unsupervised Relation Discovery with Sense Disambiguation
    Limin Yao, Sebastian Riedel, and Andrew McCallum
    In The 50th Annual Meeting of the Association for Computational Linguistics (ACL), Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, Jul 2012
  7. A Discriminative Hierarchical Model for Fast Coreference at Large Scale
    Michael L. Wick, Sameer Singh, and Andrew McCallum
    In The 50th Annual Meeting of the Association for Computational Linguistics (ACL), Proceedings of the Conference, July 8-14, 2012, Jeju Island, Korea - Volume 1: Long Papers, Jul 2012
  8. Selecting actions for resource-bounded information extraction using reinforcement learning
    Pallika H. Kanani, and Andrew McCallum
    In Proceedings of the Fifth International Conference on Web Search and Web Data Mining (WSDM), Seattle, WA, USA, February 8-12, 2012, Jul 2012
  9. Monte Carlo MCMC: Efficient Inference by Approximate Sampling
    Sameer Singh, Michael L. Wick, and Andrew McCallum
    In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), July 12-14, 2012, Jeju Island, Korea, Jul 2012
  10. Parse, Price and Cut–Delayed Column and Row Generation for Graph Based Parsers
    Sebastian Riedel, David A. Smith, and Andrew McCallum
    In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), July 12-14, 2012, Jeju Island, Korea, Jul 2012
  11. Speeding up MAP with Column Generation and Block Regularization
    David Belanger, Alexandre Passos, Sebastian Riedel, and Andrew McCallum
    In ICML Workshop on Inferning: Interactions between Inference and Learning (ICML WS), Jul 2012
  12. Human Machine Cooperation with Epistemological DBs: Supporting User Corrections to Automatically Constructed KBs
    Michael Wick, Karl Schultz, and  Andrew McCallum
    In NAACL Workshop on Automatic Knowledge Base Construction (AKBC), Jul 2012
  13. Monte Carlo MCMC: Efficient Inference by Sampling Factors
    Sameer Singh, Michael Wick, and  Andrew McCallum
    In NAACL Workshop on Automatic Knowledge Base Construction (AKBC), Jul 2012

2011

  1. Optimizing Semantic Coherence in Topic Models
    David M. Mimno, Hanna M. Wallach, Edmund M. Talley, Miriam Leenders, and Andrew McCallum
    In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP), 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2011
  2. Toward interactive training and evaluation
    Gregory Druck, and Andrew McCallum
    In Proceedings of the 20th ACM Conference on Information and Knowledge Management (CIKM), Glasgow, United Kingdom, October 24-28, 2011, Jul 2011
  3. Structured Relation Discovery using Generative Models
    Limin Yao, Aria Haghighi, Sebastian Riedel, and Andrew McCallum
    In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP), 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2011
  4. Query-Aware MCMC
    Michael L. Wick, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS) 24: 25th Annual Conference on Neural Information Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011, Granada, Spain., Jul 2011
  5. SampleRank: Training Factor Graphs with Atomic Gradients
    Michael L. Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew McCallum
    In Proceedings of the 28th International Conference on Machine Learning (ICML), Bellevue, Washington, USA, June 28 - July 2, 2011, Jul 2011
  6. Large-Scale Cross-Document Coreference Using Distributed Inference and Hierarchical Models
    Sameer Singh, Amarnag Subramanya, Fernando C. N. Pereira, and Andrew McCallum
    In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (ACL), Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, Jul 2011
  7. Fast and Robust Joint Models for Biomedical Event Extraction
    Sebastian Riedel, and Andrew McCallum
    In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP), 27-31 July 2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2011
  8. Robust Biomedical Event Extraction with Dual Decomposition and Minimal Domain Adaptation
    Sebastian Riedel, and Andrew McCallum
    In Proceedings of BioNLP Shared Task 2011 Workshop, Portland, Oregon, USA, June 24, 2011, Jul 2011
  9. Model Combination for Event Extraction in BioNLP 2011
    Sebastian Riedel, David McClosky, Mihai Surdeanu, Andrew McCallum, and Christopher D. Manning
    In Proceedings of BioNLP Shared Task 2011 Workshop, Portland, Oregon, USA, June 24, 2011, Jul 2011
  10. Correlations and anticorrelations in LDA inference
    Alexandre Passos, Hanna Wallach, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Challenges in Learning Hierarchical Models: Transfer Learning and Optimization (NIPS WS), Jul 2011
  11. Inducing Value Sparsity for Parallel Inference in Tree-shaped Models
    Sameer Singh, Brian Martin, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Computational Trade-offs in Statistical Learning (NIPS WS), Jul 2011
  12. Towards Asynchronous Distributed MCMC Inference for Large Graphical Models
    Sameer Singh, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Algorithms, Systems, and Tools for Learning at Scale (NIPS WS), Jul 2011
  13. Inter-Event Dependencies support Event Extraction from Biomedical Literature
    Roman Klinger, Sebastian Riedel, and Andrew McCallum
    In Mining Complex Entities from Network and Biomedical Data (MIND), Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases (ECML PKDD), Jul 2011
  14. Database of NIH grants using machine-learned categories and graphical clustering
    Edmund M Talley, David Newman, David Mimno, Bruce W Herr II, Hanna M Wallach, Gully Burns, Miriam Leenders, and Andrew McCallum
    Nature Methods, 8, 443–444, 27 May 2011, Jul 2011

2010

  1. Generalized Expectation Criteria for Semi-Supervised Learning with Weakly Labeled Data
    Gideon S. Mann, and Andrew McCallum
    Journal of Machine Learning Research (JMLR), Jul 2010
  2. High-Performance Semi-Supervised Learning using Discriminatively Constrained Generative Models
    Gregory Druck, and Andrew McCallum
    In Proceedings of the 27th International Conference on Machine Learning (ICML), June 21-24, 2010, Haifa, Israel, Jul 2010
  3. Collective Cross-Document Relation Extraction Without Labelled Data
    Limin Yao, Sebastian Riedel, and Andrew McCallum
    In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing (EMNLP), 9-11 October 2010, MIT Stata Center, Massachusetts, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2010
  4. Scalable Probabilistic Databases with Factor Graphs and MCMC
    Michael L. Wick, Andrew McCallum, and Gerome Miklau
    PVLDB, Jul 2010
  5. Resource-Bounded Information Extraction: Acquiring Missing Feature Values on Demand
    Pallika H. Kanani, Andrew McCallum, and Shaohan Hu
    In Advances in Knowledge Discovery and Data Mining, 14th Pacific-Asia Conference (PAKDD), Hyderabad, India, June 21-24, 2010. Proceedings. Part I, Jul 2010
  6. Constraint-Driven Rank-Based Learning for Information Extraction
    Sameer Singh, Limin Yao, Sebastian Riedel, and Andrew McCallum
    In Human Language Technologies: Conference of the North American Chapter of the Association of Computational Linguistics (NLT/NAACL), Proceedings, June 2-4, 2010, Los Angeles, California, USA, Jul 2010
  7. Distantly Labeling Data for Large Scale Cross-Document Coreference
    Sameer Singh, Michael L. Wick, and Andrew McCallum
    arXiv preprint, Jul 2010
  8. Inference by Minimizing Size, Divergence, or their Sum
    Sebastian Riedel, David A. Smith, and Andrew McCallum
    In UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island, CA, USA, July 8-11, 2010, Jul 2010
  9. Modeling Relations and Their Mentions without Labeled Text
    Sebastian Riedel, Limin Yao, and Andrew McCallum
    In Machine Learning and Knowledge Discovery in Databases, European Conference (ECML PKDD), Barcelona, Spain, September 20-24, 2010, Proceedings, Part III, Jul 2010
  10. An Introduction to Conditional Random Fields
    Charles Sutton, and Andrew McCallum
    In Foundations and Trends in Machine Learning (FnT ML), Jul 2010
  11. Distantly labeling data for large scale cross-document coreference
    Sameer Singh, Michael Wick, and Andrew McCallum
    arXiv preprint, Jul 2010
  12. Distributed MAP Inference for Undirected Graphical Models
    Sameer Singh, Amarnag Subramanya, Fernando Pereira, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Learning on Cores, Clusters, and Clouds (NIPS WS), Jul 2010
  13. Machine Translation Using Overlapping Alignments and SampleRank
    Benjamin Roth, Andrew McCallum, Marc Dymetman, and Nicola Cancedda
    In Proceedings of the Ninth Conference of the Association for Machine Translation in the Americas (AMTA), Jul 2010

2009

  1. Joint Inference for Natural Language Processing
    Andrew McCallum
    In Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL), Boulder, Colorado, USA, June 4-5, 2009, Jul 2009
  2. FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs
    Andrew McCallum, Karl Schultz, and Sameer Singh
    In Advances in Neural Information Processing Systems (NIPS) 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada., Jul 2009
  3. Piecewise training for structured prediction
    Charles A. Sutton, and Andrew McCallum
    Machine Learning (ML), Jul 2009
  4. Polylingual Topic Models
    David M. Mimno, Hanna M. Wallach, Jason Naradowsky, David A. Smith, and Andrew McCallum
    In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2009
  5. Active Learning by Labeling Features
    Gregory Druck, Burr Settles, and Andrew McCallum
    In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2009
  6. Semi-supervised Learning of Dependency Parsers using Generalized Expectation Criteria
    Gregory Druck, Gideon S. Mann, and Andrew McCallum
    In ACL 2009, Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics (ACL) and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 2-7 August 2009, Singapore, Jul 2009
  7. Rethinking LDA: Why Priors Matter
    Hanna M. Wallach, David M. Mimno, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS) 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada., Jul 2009
  8. Generalized Expectation Criteria for Bootstrapping Extractors using Record-Text Alignment
    Kedar Bellare, and Andrew McCallum
    In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing (EMNLP), 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special Interest Group of the ACL, Jul 2009
  9. Alternating Projections for Learning with Expectation Constraints
    Kedar Bellare, Gregory Druck, and Andrew McCallum
    In UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI), Montreal, QC, Canada, June 18-21, 2009, Jul 2009
  10. Efficient methods for topic model inference on streaming document collections
    Limin Yao, David M. Mimno, and Andrew McCallum
    In Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Paris, France, June 28 - July 1, 2009, Jul 2009
  11. An Entity Based Model for Coreference Resolution
    Michael L. Wick, Aron Culotta, Khashayar Rohanimanesh, and Andrew McCallum
    In Proceedings of the SIAM International Conference on Data Mining (SDM), April 30 - May 2, 2009, Sparks, Nevada, USA, Jul 2009
  12. Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference
    Michael L. Wick, Khashayar Rohanimanesh, Sameer Singh, and Andrew McCallum
    In Advances in Neural Information Processing Systems (NIPS) 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada., Jul 2009
  13. Bi-directional Joint Inference for Entity Resolution and Segmentation Using Imperatively-Defined Factor Graphs
    Sameer Singh, Karl Schultz, and Andrew McCallum
    In Machine Learning and Knowledge Discovery in Databases, European Conference (ECML PKDD), Bled, Slovenia, September 7-11, 2009, Proceedings, Part II, Jul 2009
  14. SampleRank: Learning Preferences from Atomic Gradients
    Michael Wick, Khashayar Rohanimanesh, Aron Culotta, and Andrew McCallum
    In Neural Information Processing Systems Workshop on Advances in Ranking (NIPS WS), Jul 2009
  15. Inference and Learning in Large Factor Graphs with Adaptive Proposal Distributions
    Khashayar Rohanimanesh, Michael Wick, and Andrew McCallum
    University of Massachusetts Technical Report #UM-CS-2009-008 (TR), Jul 2009
  16. Advances in Learning and Inference for Partition-wise Models of Coreference Resolution
    Michael Wick, and Andrew McCallum
    University of Massachusets Technical Report # UM-CS-2009-028 (TR), Jul 2009
  17. Representing Uncertainty in Databases with Scalable Factor Graphs
    Michael Wick
    Masters Thesis/Synthesis. Readers: Andrew McCallum and Gerome Miklau, Jul 2009
  18. Towards Theoretical Bounds for Resource-bounded Information Gathering for Correlation Clustering
    Pallika Kanani, Andrew McCallum, and Ramesh Sitaraman
    UMass TechReport UM-CS-2009-027 (TR), Jul 2009
  19. MAP inference in Large Factor Graphs with Reinforcement Learning
    Khashayar Rohanimanesh, Michael Wick, Sameer Singh, and  Andrew McCallum
    UMass Technical Report #UM-CS-2008-040 (TR), Jul 2009

2008

  1. Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression
    David M. Mimno, and Andrew McCallum
    In UAI 2008, Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI), Helsinki, Finland, July 9-12, 2008, Jul 2008
  2. Generalized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields
    Gideon S. Mann, and Andrew McCallum
    In ACL 2008, Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics (ACL), June 15-20, 2008, Columbus, Ohio, USA, Jul 2008
  3. Learning from labeled features using generalized expectation criteria
    Gregory Druck, Gideon S. Mann, and Andrew McCallum
    In Proceedings of the 31st Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR), Singapore, July 20-24, 2008, Jul 2008
  4. A Discriminative Approach to Ontology Mapping
    Michael L. Wick, Khashayar Rohanimanesh, Andrew McCallum, and AnHai Doan
    In Proceedings of the International Workshop on New Trends in Information Integration (NTII), Auckland, New Zealand, August 23, 2008, Jul 2008
  5. A unified approach for schema matching, coreference and canonicalization
    Michael L. Wick, Khashayar Rohanimanesh, Karl Schultz, and Andrew McCallum
    In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, Nevada, USA, August 24-27, 2008, Jul 2008
  6. InterNano: e-Science for the Nanomanufacturing Community
    Rebecca Reznik-Zellen, Bob Stevens, Michael Thorn, Jeff Morse, Mark D. Smucker, James Allan, David M. Mimno, Andrew McCallum, and Mark Tuominen
    In Fourth International Conference on e-Science (e-Science), 7-12 December 2008, Indianapolis, IN, USA, Jul 2008
  7. Unsupervised deduplication using cross-field dependencies
    Robert Hall, Charles A. Sutton, and Andrew McCallum
    In Proceedings of the 14th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Las Vegas, Nevada, USA, August 24-27, 2008, Jul 2008
  8. Gibbs Sampling for Logistic Normal Topic Models with Graph-Based Priors
    David Mimno, Hanna Wallach, and Andrew McCallum
    In NIPS Workshop on Analyzing Graphs (NIPS WS), 2008, Whistler, BC., Jul 2008
  9. FACTORIE: Efficient Probabilistic Programming for Relational Factor Graphs via Imperative Declarations of Structure, Inference and Learning
    Andrew McCallum, Khashayar Rohanemanesh, Michael Wick, Karl Schultz, and Sameer Singh
    In NIPS Workshop on Probabilistic Programming (NIPS WS), Jul 2008
  10. A Discriminative Approach to Ontology Mapping
    Michael L. Wick, Khashayar Rohanimanesh, Andrew McCallum, and AnHai Doan
    In Proceedings of the International Workshop on New Trends in Information Integration (NTII 2008), Auckland, New Zealand, August 23, 2008, Jul 2008
  11. Bayesian Modeling of Dependency Trees Using Hierarchical Pitman-Yor Priors
    Hanna Wallach, Charles Sutton, and Andrew McCallum
    In International Conference on Machine Learning, Workshop on Prior Knowledge for Text and Language Processing (ICML WS), Jul 2008
  12. Learning to Predict the Quality of Contributions to Wikipedia
    Gregory Druck, Gerome Miklau, and Andrew McCallum
    In AAAI Workshop on Wikipedia and AI (AAAI WS), Jul 2008
  13. Piecewise Training for Structured Prediction
    Charles Sutton, and Andrew McCallum
    Machine Learning Journal (MLJ), Jul 2008
  14. Pachinko Allocation: Scalable Mixture Models of Topic Correlations
    Wei Li, and Andrew McCallum
    Submitted to the Journal of Machine Learning Research (JMLR), Jul 2008

2007

  1. Topic and Role Discovery in Social Networks with Experiments on Enron and Academic Email
    Andrew McCallum, Xuerui Wang, and Andrés Corrada-Emmanuel
    J. Artif. Intell. Res., Jul 2007
  2. First-Order Probabilistic Models for Coreference Resolution
    Aron Culotta, Michael L. Wick, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Proceedings, April 22-27, 2007, Rochester, New York, USA, Jul 2007
  3. Canonicalization of database records using adaptive similarity measures
    Aron Culotta, Michael L. Wick, Robert Hall, Matthew Marzilli, and Andrew McCallum
    In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, California, USA, August 12-15, 2007, Jul 2007
  4. Improved Dynamic Schedules for Belief Propagation
    Charles A. Sutton, and Andrew McCallum
    In UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI), Vancouver, BC, Canada, July 19-22, 2007, Jul 2007
  5. Piecewise pseudolikelihood for efficient training of conditional random fields
    Charles A. Sutton, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML), Corvallis, Oregon, USA, June 20-24, 2007, Jul 2007
  6. Dynamic Conditional Random Fields: Factorized Probabilistic Models for Labeling and Segmenting Sequence Data
    Charles A. Sutton, Andrew McCallum, and Khashayar Rohanimanesh
    Journal of Machine Learning Research (JMLR), Jul 2007
  7. Expertise modeling for matching papers with reviewers
    David M. Mimno, and Andrew McCallum
    In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, California, USA, August 12-15, 2007, Jul 2007
  8. Mining a digital library for influential authors
    David M. Mimno, and Andrew McCallum
    In ACM/IEEE Joint Conference on Digital Libraries (JCDL), Vancouver, BC, Canada, June 18-23, 2007, Proceedings, Jul 2007
  9. Organizing the OCA: learning faceted subjects from a library of digital books
    David M. Mimno, and Andrew McCallum
    In ACM/IEEE Joint Conference on Digital Libraries (JCDL), Vancouver, BC, Canada, June 18-23, 2007, Proceedings, Jul 2007
  10. Mixtures of hierarchical topics with Pachinko allocation
    David M. Mimno, Wei Li, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML), Corvallis, Oregon, USA, June 20-24, 2007, Jul 2007
  11. Cryptogram Decoding for OCR Using Numerization Strings
    Gary B. Huang, Erik G. Learned-Miller, and Andrew McCallum
    In 9th International Conference on Document Analysis and Recognition (ICDAR), 23-26 September, Curitiba, Paraná, Brazil, Jul 2007
  12. Efficient Computation of Entropy Gradient for Semi-Supervised Conditional Random Fields
    Gideon S. Mann, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Proceedings, April 22-27, 2007, Rochester, New York, USA, Jul 2007
  13. Simple, robust, scalable semi-supervised learning via expectation regularization
    Gideon S. Mann, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-Fourth International Conference (ICML), Corvallis, Oregon, USA, June 20-24, 2007, Jul 2007
  14. Semi-supervised classification with hybrid generative/discriminative methods
    Gregory Druck, Chris Pal, Andrew McCallum, and Xiaojin Zhu
    In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, California, USA, August 12-15, 2007, Jul 2007
  15. WebKDD/SNAKDD 2007: web mining and social network analysis post-workshop report
    Haizheng Zhang, John Yen, C. Lee Giles, Bamshad Mobasher, Myra Spiliopoulou, Jaideep Srivastava, Olfa Nasraoui, and Andrew McCallum
    SIGKDD Explorations, Jul 2007
  16. Resource-Bounded Information Gathering for Correlation Clustering
    Pallika H. Kanani, and Andrew McCallum
    In Learning Theory, 20th Annual Conference on Learning Theory (COLT), San Diego, CA, USA, June 13-15, 2007, Proceedings, Jul 2007
  17. Improving Author Coreference by Resource-Bounded Information Gathering from the Web
    Pallika H. Kanani, Andrew McCallum, and Chris Pal
    In IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, January 6-12, 2007, Jul 2007
  18. People-LDA: Anchoring Topics to People using Face Recognition
    Vidit Jain, Erik G. Learned-Miller, and Andrew McCallum
    In IEEE 11th International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, October 14-20, 2007, Jul 2007
  19. Nonparametric Bayes Pachinko Allocation
    Wei Li, David M. Blei, and Andrew McCallum
    In UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence (UAI), Vancouver, BC, Canada, July 19-22, 2007, Jul 2007
  20. Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval
    Xuerui Wang, Andrew McCallum, and Xing Wei
    In Proceedings of the 7th IEEE International Conference on Data Mining (ICDM), October 28-31, 2007, Omaha, Nebraska, USA, Jul 2007
  21. Generalized component analysis for text with heterogeneous attributes
    Xuerui Wang, Chris Pal, and Andrew McCallum
    In Proceedings of the 13th ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), San Jose, California, USA, August 12-15, 2007, Jul 2007
  22. Unsupervised Coreference of Publication Venues
    Robert Hall, Charles Sutton, and Andrew McCallum
    University of Massachusetts Amherst Technical Report (TR), Jul 2007
  23. Generalized Expectation Criteria
    Andrew McCallum, Gideon Mann, and Gregory Druck
    University of Massachusetts Amherst Technical Report #2007-60 (TR), Jul 2007
  24. Reducing Annotation Effort using Generalized Expectation Criteria–DRAFT
    Gregory Druck, Gideon Mann, and Andrew McCallum
    University of Massachusetts Amherst Technical Report #2007-62 (TR), Jul 2007
  25. Community-based Link Prediction with Text
    David Mimno, Hanna M. Wallach, and Andrew McCallum
    In NIPS Workshop on Statistical Network Modeling (NIPS WS), Jul 2007
  26. Leveraging Existing Resources using Generalized Expectation Criteria
    Gregory Druck, Gideon Mann, and Andrew McCallum
    In NIPS Workshop on Learning Problem Design (NIPS WS), Jul 2007
  27. Lightly-Supervised Attribute Extraction for Web Search
    Kedar Bellare, Partha Pratim Talukdar, Giridhar Kumaran, Fernando Pereira, Mark Liberman, Andrew McCallum, and Mark Dredze
    In NIPS Workshop on Machine Learning for Web Search (NIPS WS), Jul 2007
  28. Joint Group and Topic Discovery from Relations and Text
    Andrew McCallum, Xuerui Wang, and Natasha Mohanty
    Statistical Network Analysis: Models, Issues and New Directions, Lecture Notes in Computer Science 4503, pp. 28-44 (Book chapter), 2007, Jul 2007
  29. Learning Extractors from Unlabeled Text using Relevant Databases
    Kedar Bellare, and Andrew McCallum
    In Sixth International Workshop on Information Integration on the Web (IIWeb), collocated with AAAI, 2007, Jul 2007
  30. Efficient Strategies for Improving Partitioning-Based Author Coreference by Incorporating Web Pages as Graph Nodes
    Pallika Kanani, and Andrew McCallum
    In Sixth International Workshop on Information Integration on the Web (IIWeb), collocated with AAAI, 2007, Jul 2007
  31. Probabilistic Representations for Integrating Unreliable Data Sources
    David Mimno, and Andrew McCallum
    In Sixth International Workshop on Information Integration on the Web (IIWeb), collocated with AAAI, 2007, Jul 2007
  32. Author Disambiguation using Error-Driven Machine Learning With a Ranking Loss Function
    Aron Culotta, Pallika Kanani, Robert Hall, Michael Wick, and  Andrew McCallum
    In Sixth International Workshop on Information Integration on the Web (IIWeb), collocated with AAAI, 2007, Jul 2007
  33. Transfer Learning for Enhancing Information Flow in Organizations and Social Networks
    Chris Pal, Xuerui Wang, and Andrew McCallum
    In Submitted to Conference on Email and Spam (CEAS), 2007. Technical Note, Jul 2007
  34. Sparse Message Passing Algorithms for Weighted Maximum Satisfiability
    Aron Culotta, Andrew McCallum, Bart Selman, and Ashish Sabharwal
    In New England Student Symposium on Artificial Intelligence (NESCAI), Jul 2007
  35. Penn/UMass/CHOP BiocreativeII Systems
    Kuzman Ganchev, Koby Crammer, Fernando Pereira, Gideon Mann, Kedar Bellare, Andrew McCallum, Steven Carroll, Yang Jin, and  Peter White
    In BiocreativeII Evaluation Workshop, Jul 2007

2006

  1. Information extraction, data mining and joint inference
    Andrew McCallum
    In Proceedings of the Twelfth ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA, USA, August 20-23, 2006, Jul 2006
  2. Multi-Conditional Learning: Generative/Discriminative Training for Clustering and Classification
    Andrew McCallum, Chris Pal, Gregory Druck, and Xuerui Wang
    In Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI), July 16-20, 2006, Boston, Massachusetts, USA, Jul 2006
  3. Joint Group and Topic Discovery from Relations and Text
    Andrew McCallum, Xuerui Wang, and Natasha Mohanty
    In Statistical Network Analysis: Models, Issues, and New Directions - ICML 2006 Workshop on Statistical Network Analysis (ICML WS), Pittsburgh, PA, USA, June 29, 2006, Revised Selected Papers, Jul 2006
  4. Integrating Probabilistic Extraction Models and Data Mining to Discover Relations and Patterns in Text
    Aron Culotta, Andrew McCallum, and Jonathan Betz
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics, Proceedings (HLT/NAACL), June 4-9, 2006, New York, New York, USA, Jul 2006
  5. Corrective feedback and persistent learning for information extraction
    Aron Culotta, Trausti T. Kristjansson, Andrew McCallum, and Paul A. Viola
    Artif. Intell., Jul 2006
  6. Combining Generative and Discriminative Methods for Pixel Classification with Multi-Conditional Learning
    B. Michael Kelm, Chris Pal, and Andrew McCallum
    In 18th International Conference on Pattern Recognition (ICPR), 20-24 August 2006, Hong Kong, China, Jul 2006
  7. Reducing Weight Undertraining in Structured Discriminative Learning
    Charles A. Sutton, Michael Sindelar, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics (HLT/NAACL), Proceedings, June 4-9, 2006, New York, New York, USA, Jul 2006
  8. Sparse Forward-Backward Using Minimum Divergence Beams for Fast Training Of Conditional Random Fields
    Chris Pal, Charles A. Sutton, and Andrew McCallum
    In 2006 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), Toulouse, France, May 14-19, 2006, Jul 2006
  9. Information extraction from research papers using conditional random fields
    Fuchun Peng, and Andrew McCallum
    Inf. Process. Manage., Jul 2006
  10. Bibliometric impact measures leveraging topic analysis
    Gideon S. Mann, David M. Mimno, and Andrew McCallum
    In ACM/IEEE Joint Conference on Digital Libraries (JCDL), Chapel Hill, NC, USA, June 11-15, 2006, Proceedings, Jul 2006
  11. Learning Field Compatibilities to Extract Database Records from Unstructured Text
    Michael L. Wick, Aron Culotta, and Andrew McCallum
    In EMNLP 2007, Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (EMNLP), 22-23 July 2006, Sydney, Australia, Jul 2006
  12. Exploring the Use of Conditional Random Field Models and HMMs for Historical Handwritten Document Recognition
    Shaolei Feng, R. Manmatha, and Andrew McCallum
    In Second International Workshop on Document Image Analysis for Libraries (DIAL), 27-28 April 2006, Lyon, France, Jul 2006
  13. Pachinko allocation: DAG-structured mixture models of topic correlations
    Wei Li, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-Third International Conference (ICML), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, Jul 2006
  14. Table extraction for answer retrieval
    Xing Wei, W. Bruce Croft, and Andrew McCallum
    Inf. Retr., Jul 2006
  15. Topics over time: a non-Markov continuous-time model of topical trends
    Xuerui Wang, and Andrew McCallum
    In Proceedings of the Twelfth ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD), Philadelphia, PA, USA, August 20-23, 2006, Jul 2006
  16. On Discriminative and Semi-Supervised Dimensionality Reduction
    Chris Pal, Michael Kelm, Xuerui Wang, Greg Druck, and Andrew McCallum
    In Advances in Neural Information Processing Systems, Workshop on Novel Applications of Dimensionality Reduction (NIPS Workshop), Jul 2006
  17. Tractable Learning and Inference with Higher-Order Representations
    Aron Culotta, and Andrew McCallum
    In ICML Workshop on Open Problems in Statistical Relational Learning (ICML WS), Jul 2006
  18. CC Prediction with Graphical Models
    Chris Pal, and Andrew McCallum
    In Conference on Email and Anti-Spam (CEAS), Jul 2006
  19. Practical Markov Logic Containing First-order Quantifiers with Application to Identity Uncertainty
    Aron Culotta, and Andrew McCallum
    In HLT Workshop on Computationally Hard Problems and Joint Inference in Speech and Language Processing, Jul 2006
  20. A Continuous-Time Model of Topic Co-occurrence Trends
    Xuerui Wang, Wei Li, and  Andrew McCallum
    In AAAI Workshop on Event Detection (AAAI WS), Jul 2006
  21. An Introduction to Conditional Random Fields for Relational Learning
    Charles Sutton, and Andrew McCallum
    Book chapter in Introduction to Statistical Relational Learning, Jul 2006
  22. Semi-supervised Text Classification Using EM
    Kamal Nigam, Andrew McCallum, and Tom Mitchell
    Book chapter in Semi-Supervised Learning, Jul 2006

2005

  1. Information extraction: distilling structured data from unstructured text
    Andrew McCallum
    ACM Queue, Jul 2005
  2. Topic and Role Discovery in Social Networks
    Andrew McCallum, Andrés Corrada-Emmanuel, and Xuerui Wang
    In IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, UK, July 30 - August 5, 2005, Jul 2005
  3. A Conditional Random Field for Discriminatively-trained Finite-state String Edit Distance
    Andrew McCallum, Kedar Bellare, and Fernando C. N. Pereira
    In UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland, July 26-29, 2005, Jul 2005
  4. Joint deduplication of multiple record types in relational data
    Aron Culotta, and Andrew McCallum
    In Proceedings of the 2005 ACM International Conference on Information and Knowledge Management (CIKM), Bremen, Germany, October 31 - November 5, 2005, Jul 2005
  5. Reducing Labeling Effort for Structured Prediction Tasks
    Aron Culotta, and Andrew McCallum
    In Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), July 9-13, 2005, Pittsburgh, Pennsylvania, USA, Jul 2005
  6. Composition of Conditional Random Fields for Transfer Learning
    Charles A. Sutton, and Andrew McCallum
    In HLT/EMNLP 2005, Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing (EMNLP), Proceedings of the Conference, 6-8 October 2005, Vancouver, British Columbia, Canada, Jul 2005
  7. Joint Parsing and Semantic Role Labeling
    Charles A. Sutton, and Andrew McCallum
    In Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL), Ann Arbor, Michigan, USA, June 29-30, 2005, Jul 2005
  8. Piecewise Training for Undirected Models
    Charles A. Sutton, and Andrew McCallum
    In UAI ’05, Proceedings of the 21st Conference in Uncertainty in Artificial Intelligence (UAI), Edinburgh, Scotland, July 26-29, 2005, Jul 2005
  9. Collective multi-label classification
    Nadia Ghamrawi, and Andrew McCallum
    In Proceedings of the 2005 ACM International Conference on Information and Knowledge Management (CIKM), Bremen, Germany, October 31 - November 5, 2005, Jul 2005
  10. Disambiguating Web appearances of people in a social network
    Ron Bekkerman, and Andrew McCallum
    In Proceedings of the 14th international conference on World Wide Web (WWW), Chiba, Japan, May 10-14, 2005, Jul 2005
  11. Multi-way distributional clustering via pairwise interactions
    Ron Bekkerman, Ran El-Yaniv, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-Second International Conference (ICML), Bonn, Germany, August 7-11, 2005, Jul 2005
  12. Semi-Supervised Sequence Modeling with Syntactic Topic Models
    Wei Li, and Andrew McCallum
    In Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI), July 9-13, 2005, Pittsburgh, Pennsylvania, USA, Jul 2005
  13. Group and topic discovery from relations and text
    Xuerui Wang, Natasha Mohanty, and Andrew McCallum
    In Proceedings of the 3rd international workshop on Link discovery (LinkKDD), Chicago, Illinois, USA, August 21-25, 2005, Jul 2005
  14. Group and Topic Discovery from Relations and Their Attributes
    Xuerui Wang, Natasha Mohanty, and Andrew McCallum
    In Advances in Neural Information Processing Systems 18 [Neural Information Processing Systems (NIPS), December 5-8, 2005, Vancouver, British Columbia, Canada], Jul 2005
  15. Detecting Anomalies in Network Traffic Using Maximum Entropy Estimation
    Yu Gu, Andrew McCallum, and Donald F. Towsley
    In Proceedings of the 5th Internet Measurement Conference (IMC), Berkeley, California, USA, October 19-21, 2005, Jul 2005
  16. A Note on Topical N-grams
    Xuerui Wang, and Andrew McCallum
    University of Massachusetts Technical Report UM-CS-2005-071 (TR), Jul 2005
  17. Pachinko allocation: A Directed Acyclic Graph for Topic Correlations
    Wei Li, and Andrew McCallum
    In NIPS Workshop on Nonparametric Bayesian Methods (NIPS WS), Jul 2005
  18. Direct Maximization of Rank-Based Metrics for Information Retrieval
    W. Bruce Croft Don Metzler, and Andrew McCallum
    CIIR Technical Report IR-429 (TR), Jul 2005
  19. Learning Clusterwise Similarity with First-order Features
    Aron Culotta, and Andrew McCallum
    In NIPS Workshop on the Theoretical Foundations of Clustering (NIPS WS), Jul 2005
  20. Feature Bagging: Preventing Weight Undertraining in Structured Discriminative Learning
    Charles Sutton, Michael Sindelar, and Andrew McCallum
    Center for Intelligent Information Retrieval, University of Massachusetts Technical Report IR-402 (TR), Jul 2005
  21. Fast, Piecewise Training for Discriminative Finite-state and Parsing Models
    Charles Sutton, and Andrew McCallum
    Center for Intelligent Information Retrieval Technical Report IR-403 (TR), Jul 2005
  22. Practical Markov Logic Containing First-order Quantifiers with Application to Identity Uncertainty
    Aron Culotta, and Andrew McCallum
    Technical Report IR-430, University of Massachusetts (TR), Jul 2005
  23. A Conditional Model of Deduplication for Multi-type Relational Data
    Aron Culotta, and Andrew McCallum
    Technical Report IR-443, University of Massachusetts (TR), Jul 2005
  24. Predictive Random Fields: Latent Variable Models Fit by Multiway Conditional Probability with Applications to Document Analysis
    Andrew McCallum, Xuerui Wang, and Chris Pal
    UMass Technical Report UM-CS-2005-053, version 2.1 (TR), Jul 2005
  25. Gene Prediction with Conditional Random Fields
    Aron Culotta, David Kulp, and Andrew McCallum
    Technical Report UM-CS-2005-028, University of Massachusetts, Amherst (TR), Jul 2005
  26. Constrained Kronecker Deltas for Fast Approximate Inference and Estimation
    Chris Pal, Charles Sutton, and Andrew McCallum
    In Submitted to UAI, Jul 2005

2004

  1. Conditional Models of Identity Uncertainty with Application to Noun Coreference
    Andrew McCallum, and Ben Wellner
    In Advances in Neural Information Processing Systems 17 [Neural Information Processing Systems (NIPS), December 13-18, 2004, Vancouver, British Columbia, Canada], Jul 2004
  2. Extracting social networks and contact information from email and the Web
    Aron Culotta, Ron Bekkerman, and Andrew McCallum
    In CEAS 2004 - First Conference on Email and Anti-Spam (CEAS), July 30-31, 2004, Mountain View, California, USA, Jul 2004
  3. An Integrated, Conditional Model of Information Extraction and Coreference with Appli
    Ben Wellner, Andrew McCallum, Fuchun Peng, and Michael Hay
    In UAI ’04, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence (UAI), Banff, Canada, July 7-11, 2004, Jul 2004
  4. Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data
    Charles A. Sutton, Khashayar Rohanimanesh, and Andrew McCallum
    In Machine Learning, Proceedings of the Twenty-first International Conference (ICML), Banff, Alberta, Canada, July 4-8, 2004, Jul 2004
  5. Accurate Information Extraction from Research Papers using Conditional Random Fields
    Fuchun Peng, and Andrew McCallum
    In Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics (HLT-NAACL), Boston, Massachusetts, USA, May 2-7, 2004, Jul 2004
  6. Chinese Segmentation and New Word Detection using Conditional Random Fields
    Fuchun Peng, Fangfang Feng, and Andrew McCallum
    In COLING 2004, 20th International Conference on Computational Linguistics, Proceedings of the Conference (COLING), 23-27 August 2004, Geneva, Switzerland, Jul 2004
  7. Interactive Information Extraction with Constrained Conditional Random Fields
    Trausti T. Kristjansson, Aron Culotta, Paul A. Viola, and Andrew McCallum
    In Proceedings of the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intelligence (AAAI), July 25-29, 2004, San Jose, California, USA, Jul 2004
  8. Piecewise Training with Parameter Independence Diagrams: Comparing Globally- and Locally-trained Linear-chain CRFs
    Andrew McCallum, and Charles Sutton
    Center for Intelligent Information Retrieval, University of Massachusetts Technical Report IR-383 (TR), Jul 2004
  9. Automatic Categorization of Email into Folders: Benchmark Experiments on Enron and SRI Corpora
    Ron Bekkerman, Andrew McCallum, and Gary Huang
    Center for Intelligent Information Retrieval, University of Massachusetts Technical Report IR-383 (TR), Jul 2004
  10. The Author-Recipient-Topic Model for Topic and Role Discovery in Social Networks: Experiments with Enron and Academic Email
    Andrew McCallum, Andres Corrada-Emmanuel, and Xuerui Wang
    Technical Report UM-CS-2004-096 (TR), Jul 2004
  11. Collective Segmentation and Labeling of Distant Entities in Information Extraction
    Charles Sutton, and Andrew McCallum
    In ICML workshop on Statistical Relational Learning (ICML WS), Jul 2004
  12. An Exploration of Entity Models, Collective Classification and Relation Description
    Hema Raghavan, James Allan, and Andrew McCallum
    In KDD Workshop on Link Analysis and Group Detection (KDD WS), Jul 2004
  13. Sign Detection in Natural Images with Conditional Random Fields
    Jerod Weinman, Al Hansen, and Andrew McCallum
    In IEEE International Workshop on Machine Learning for Signal Processing, Jul 2004
  14. Confidence Estimation for Information Extraction
    Aron Culotta, and Andrew McCallum
    In Proceedings of Human Language Technology Conference and North American Chapter of the Association for Computational Linguistics (HLT-NAACL), Jul 2004
  15. A Note on Semi-supervised Learning using Markov Random Fields
    Wei Li, and Andrew McCallum
    Technical Note, February 3, 2004, Jul 2004

2003

  1. Efficiently Inducing Features of Conditional Random Fields
    Andrew McCallum
    In UAI ’03, Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence (UAI), Acapulco, Mexico, August 7-10 2003, Jul 2003
  2. Toward Conditional Models of Identity Uncertainty with Application to Proper Noun Coreference
    Andrew McCallum, and Ben Wellner
    In Proceedings of IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), August 9-10, 2003, Acapulco, Mexico, Jul 2003
  3. Early results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons
    Andrew McCallum, and Wei Li
    In Proceedings of the Seventh Conference on Natural Language Learning (CoNLL 2003), Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, May 31 - June 1, 2003, Jul 2003
  4. Table Extraction Using Conditional Random Fields
    David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft
    In Proceedings of the 2003 Annual National Conference on Digital Government Research (DG.O), 2003, Jul 2003
  5. Table extraction using conditional random fields
    David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft
    In SIGIR 2003: Proceedings of the 26th Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR), July 28 - August 1, 2003, Toronto, Canada, Jul 2003
  6. Challenges in information retrieval and language modeling: report of a workshop held at the center for intelligent information retrieval, University of Massachusetts Amherst, September 2002
    James Allan, Jay Aslam, Nicholas J. Belkin, Chris Buckley, James P. Callan, W. Bruce Croft, Susan T. Dumais, Norbert Fuhr, Donna Harman, David J. Harper, Djoerd Hiemstra, Thomas Hofmann, Eduard H. Hovy, Wessel Kraaij, John D. Lafferty, Victor Lavrenko, David D. Lewis, Liz Liddy, R. Manmatha, Andrew McCallum, Jay M. Ponte, John M. Prager, Dragomir R. Radev, Philip Resnik, Stephen E. Robertson, Ronald Rosenfeld, Salim Roukos, Mark Sanderson, Richard M. Schwartz, Amit Singhal, Alan F. Smeaton, Howard R. Turtle, Ellen M. Voorhees, Ralph M. Weischedel, Jinxi Xu, and ChengXiang Zhai
    SIGIR Forum, Jul 2003
  7. Classification with Hybrid Generative/Discriminative Models
    Rajat Raina, Yirong Shen, Andrew Y. Ng, and Andrew McCallum
    In Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems (NIPS), December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada], Jul 2003
  8. Rapid development of Hindi named entity recognition using conditional random fields and feature induction
    Wei Li, and Andrew McCallum
    ACM Trans. Asian Lang. Inf. Process., Jul 2003
  9. Dynamic Conditional Random Fields for Jointly Labeling Multiple Sequences
    Andrew McCallum, Khashayar Rohanimanesh, and Charles Sutton
    In NIPS*2003 Workshop on Syntax, Semantics, Statistics (NIPS WS), Jul 2003
  10. A Note on the Unification of Information Extraction and Data Mining using Conditional-Probability, Relational Models
    Andrew McCallum, and David Jensen
    In IJCAI’03 Workshop on Learning Statistical Models from Relational Data (IJCAI WS), Jul 2003
  11. Object Consolidation by Graph Partitioning with a Conditionally-trained Distance Metric
    Andrew McCallum, and Ben Wellner
    In KDD Workshop on Data Cleaning, Record Linkage and Object Consolidation (KDD WS), Jul 2003

2002

  1. Learning with Scope, with Application to Information Extraction and Classification
    David M. Blei, J. Andrew Bagnell, and Andrew McCallum
    In UAI ’02, Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence (UAI), University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002, Jul 2002

2001

  1. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data
    John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira
    In Proceedings of the Eighteenth International Conference on Machine Learning (ICML), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001, Jul 2001
  2. Toward Optimal Active Learning through Sampling Estimation of Error Reduction
    Nicholas Roy, and Andrew McCallum
    In Proceedings of the Eighteenth International Conference on Machine Learning (ICML), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001, Jul 2001
  3. Unlocking the Information in Text
    Dallan Quass, Andrew McCallum, and William Cohen
    In The Future of Software, Winter 2000/2001, Jul 2001

2000

  1. Maximum Entropy Markov Models for Information Extraction and Segmentation
    Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira
    In Proceedings of the Seventeenth International Conference on Machine Learning (ICML), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000, Jul 2000
  2. Automating the Construction of Internet Portals with Machine Learning
    Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore
    Inf. Retr., Jul 2000
  3. Efficient clustering of high-dimensional data sets with application to reference matching
    Andrew McCallum, Kamal Nigam, and Lyle H. Ungar
    In Proceedings of the sixth ACM international conference on Knowledge discovery and data mining (SIGKDD), Boston, MA, USA, August 20-23, 2000, Jul 2000
  4. Information Extraction with HMM Structures Learned by Stochastic Optimization
    Dayne Freitag, and Andrew McCallum
    In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on on Innovative Applications of Artificial Intelligence (AAAI), July 30 - August 3, 2000, Austin, Texas, USA., Jul 2000
  5. Learning to Create Customized Authority Lists
    Huan Chang, David Cohn, and Andrew McCallum
    In Proceedings of the Seventeenth International Conference on Machine Learning (ICML), Stanford University, Stanford, CA, USA, June 29 - July 2, 2000, Jul 2000
  6. Text Classification from Labeled and Unlabeled Documents using EM
    Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell
    Machine Learning (ML), Jul 2000
  7. Learning to construct knowledge bases from the World Wide Web
    Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M. Mitchell, Kamal Nigam, and Seán Slattery
    Artif. Intell., Jul 2000
  8. Learning to Understand the Web
    William W. Cohen, Andrew McCallum, and Dallan Quass
    IEEE Data Eng. Bull., Jul 2000
  9. Semi-supervised Clustering with User Feedback
    David Cohn, Rich Caruana, and Andrew McCallum
    In Submitted to AAAI 2000, Jul 2000

1999

  1. A Machine Learning Approach to Building Domain-Specific Search Engines
    Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore
    In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI) Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, Jul 1999
  2. Using Reinforcement Learning to Spider the Web Efficiently
    Jason Rennie, and Andrew McCallum
    In Proceedings of the Sixteenth International Conference on Machine Learning (ICML), Bled, Slovenia, June 27 - 30, 1999, Jul 1999
  3. Creating customized authority lists
    Huan Chang, David Cohn, and Andrew McCallum
    In Proceedings of the 17th International Conference on Machine Learning (ICML), Jul 1999
  4. Multi-Label Text Classification with a Mixture Model Trained by EM
    Andrew McCallum
    In AAAI’99 Workshop on Text Learning (AAAI WS), Jul 1999
  5. A Hierarchical Probabilistic Model for Novelty Detection in Text
    Doug Baker, Thomas Hofmann, Andrew McCallum, and Yiming Yang
    In Submitted to NIPS’99, Jul 1999
  6. Using Maximum Entropy for Text Classification
    Kamal Nigam, John Lafferty, and Andrew McCallum
    In IJCAI’99 Workshop on Information Filtering (IJCAI WS), Jul 1999
  7. Information Extraction with HMMs and Shrinkage
    Dayne Frietag, and Andrew McCallum
    In AAAI’99 Workshop on Machine Learning for Information Extraction (AAAI WS), Jul 1999
  8. Learning Hidden Markov Model Structure for Information Extraction
    Kristie Seymore, Andrew McCallum, and Roni Rosenfeld
    In AAAI’99 Workshop on Machine Learning for Information Extraction (AAAI WS), Jul 1999
  9. Bootstrapping for Text Learning Tasks
    Rosie Jones, Andrew McCallum, Kamal Nigam, and Ellen Riloff
    In IJCAI-99 Workshop on Text Mining: Foundations, Techniques and Applications (IJCAI WS), Jul 1999
  10. Building Domain-Specific Search Engines with Machine Learning Techniques
    Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore
    In AAAI-99 Spring Symposium (AAAI-SS), Jul 1999

1998

  1. Employing EM and Pool-Based Active Learning for Text Classification
    Andrew McCallum, and Kamal Nigam
    In Proceedings of the Fifteenth International Conference on Machine Learning (ICML), Madison, Wisconsin, USA, July 24-27, 1998, Jul 1998
  2. Improving Text Classification by Shrinkage in a Hierarchy of Classes
    Andrew McCallum, Ronald Rosenfeld, Tom M. Mitchell, and Andrew Y. Ng
    In Proceedings of the Fifteenth International Conference on Machine Learning (ICML), Madison, Wisconsin, USA, July 24-27, 1998, Jul 1998
  3. Learning to Classify Text from Labeled and Unlabeled Documents
    Kamal Nigam, Andrew McCallum, Sebastian Thrun, and Tom M. Mitchell
    In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference (AAAI), July 26-30, 1998, Madison, Wisconsin, USA., Jul 1998
  4. Distributional Clustering of Words for Text Classification
    L. Douglas Baker, and Andrew McCallum
    In SIGIR ’98: Proceedings of the 21st Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR), August 24-28 1998, Melbourne, Australia, Jul 1998
  5. Learning to Extract Symbolic Knowledge from the World Wide Web
    Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom M. Mitchell, Kamal Nigam, and Seán Slattery
    In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference (AAAI), July 26-30, 1998, Madison, Wisconsin, USA., Jul 1998
  6. A Comparison of Event Models for Naive Bayes Text Classification
    Andrew McCallum, and Kamal Nigam
    In AAAI-98 Workshop on "Learning for Text Categorization" (AAAI WS), Jul 1998

1997

  1. Efficient Exploration in Reinforcement Learning with Hidden State
    Andrew McCallum
    In AAAI Fall Symposium on "Model-directed Autonomous Systems", Jul 1997

1996

  1. Hidden State and Reinforcement Learning with Instance-Based State Identification
    Andrew McCallum
    IEEE Transations on Systems, Man and Cybernetics, Special issue on Robot Learning, Jul 1996
  2. Learning to Use Selective Attention and Short-Term Memory in Sequential Tasks
    Andrew McCallum
    In From Animals to Animats, Fourth International Conference on Simulation of Adaptive Behavior, (SAB’96). Cape Cod, Massachusetts., Jul 1996

1995

  1. Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State
    Andrew McCallum
    In Machine Learning, Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, USA, July 9-12, 1995, Jul 1995
  2. Reinforcement Learning with Selective Perception and Hidden State
    Andrew McCallum
    PhD. thesis, Jul 1995

1994

  1. Instance-Based State Identification for Reinforcement Learning
    Andrew McCallum
    In Advances in Neural Information Processing Systems 7, (NIPS), Denver, Colorado, USA, Jul 1994
  2. First Results with Instance-Based State Identification for Reinforcement Learning
    Andrew McCallum
    URCS Tech Report 502 (TR), Jul 1994
  3. Reduced Training Time for Reinforcement Learning with Hidden State
    Andrew McCallum
    In The Proceedings of the Eleventh International Machine Learning Workshop, Robot Learning, New Brunswick, NJ, Jul 1994
  4. Short-Term Memory in Visual Routines for ‘Off-Road Car Chasing’
    Andrew McCallum
    In Working Notes of AAAI Spring Symposium Series, "Toward Physical Interaction and Manipulation", Stanford University, March 21-23, Jul 1994

1993

  1. Overcoming Incomplete Perception with Util Distinction Memory
    Andrew McCallum
    In Machine Learning, Proceedings of the Tenth International Conference, University of Massachusetts, Amherst, MA, USA, June 27-29, 1993, Jul 1993
  2. Learning with Incomplete Selective Perception
    Andrew McCallum
    URCS Tech Report 453 (TR), Jul 1993
  3. Linking Shared Segments
    William E Garrett, Michael L Scott, Ricardo Bianchini, Leonidas I Kontothanassis, Andrew McCallum, Jeffrey A Thomas, Robert W Wisniewski, and Steve Luk
    In Winter USENIX, San Diego, CA, Jul 1993

1992

  1. Using Transitional Proximity for Faster Reinforcement Learning
    Andrew McCallum
    In Proceedings of the Ninth International Workshop on Machine Learning (ML WS), Aberdeen, Scotland, UK, July 1-3, 1992, Jul 1992
  2. First Results with Utile Distinction Memory for Reinforcement Learning
    Andrew McCallum
    URCS Tech Report 446 (TR), Jul 1992
  3. Dynamic Sharing and Backward Compatibility on 64-Bit Machines
    William E Garrett, LI Bianchini, LI Kontothanassis, Andrew McCallum, Jeffery Thomas, Robert Wisniewski, and Michael L Scott
    URCS Tech Report 418 (TR), Jul 1992

1991

    1990

    1. Using Genetic Algorithms to Learn Disjunctive Rules from Examples
      Andrew McCallum, and Kent A. Spackman
      In Machine Learning, Proceedings of the Seventh International Conference on Machine Learning (ICML), Austin, Texas, USA, June 21-23, 1990, Jul 1990